Physics & Process Modeling

ADVANCED CONCEPTS

PHYSICS-BASED ANALYSIS

Civil Transportation Vision for FACT Application

Benefits:

- Double capacity within existing infrastructure
- 30% reduction in fuel burn
- 70% reduction in CO₂
- Luxury passenger car interior noise
- No operational noise constraints
- 50% reduction in total airplane operating costs
- 200% increase in revenue pass. miles /gal

Leapfrog Technology:

- Advanced Materials
- •Ultra High By-Pass Ratio Eng.
- •Stage 4 -??dB
- Advanced Configurations
- Advanced ATM

FACT R&T Base

Barrier Technology Development: Aerodynamics Rn Scaling Issues Noise reduction concepts W-T tests of advanced aerodynamic concepts Materials and Structures Low Cost Manufacturing Sub-scale testing & analysis of non-circular structures

X-Plane:
•Thick Airfoils

Propulsion R&T Base

Noise Reduction ConceptsPropulsion/Airframe Integration

Aircraft Morphing Program Sub-Elements

 Embedded technologies for airframe monitoring and healing for increased flight safety

2. Component technologies which enable environmentally compatible integrated self-adaptive airframes

3. Smart airframe design, integration, and system analysis

Morphing Technologies

Embedded sensors - embedded fiber optic and micro sensors for damage detection

Specialized polymers - hierarchical polymers with improved properties; analytical techniques for efficient design of polymers

Innovative fabrication - processing structural composites with sensor and actuator integration; embedding smart materials

Piezoelectric materials - high efficiency piezoelectric patch devices, bender actuators, and piezoelectric polymers

Microelectromechanical devices - microactuator devices with higher energy density, force output, and efficiency

Mechatronics - validated models of devices considering actuator and electronics as an integrated system

Noise reduction - reduce noise and vibration with minimum weight and space penalties; adaptive inlet shaping to

reduce noise

Shape memory alloy hybrid composite - fabrication technology for aerospace structures exposed to large sonic loads

Embedded interdigitated electrode piezoelectric fiber composites - for improving aeroelastic performance of aerospace structures

Active and shunted piezoelectric - patches for aeroelastic control

Multi-degree of freedom models - multifunctional structures with surface-bonded or embedded piezoelectric patches

Aeroelastic control - seamless control surfaces, wing twist, extendible leading edge control surfaces, variable stiffness

Innovative flow control - separation control, generation of control forces, reduction in cavity noise, viscous drag reduction

MEMS flow sensor technology - detect flow separation and transition to turbulence; integrated sensor arrays for flight test

Optimal control theory - CFD for active flow control to determine actuator response, actuator and sensor location, required sensor

Real-time system identification - feedback and feedforward control

Discrete and continuous optimization - for sensor/actuator location

Device MDO - improve effectiveness, weight or power requirements of smart devices

General Aviation Propulsion Program

PROGRAM GOAL: By 2000, Develop and flight-demonstrate affordable revolutionary propulsion systems for general aviation aircraft to stimulate revitalization of the U.S. General Aviation Light Aircraft Industry ENGINE DESIGN OBJECTIVES: IC Turbine

Cost Reduction 50% 90%

Fuel JP

Time Between Overhaul Increase 75% 50%

Specific Fuel Consumption Increase25%

Environmental Compliance Meet/exceed expected

(Noise & Emissions)

Standards for year 2000

Implemented Through Cooperative Agreements

IC: Teledyne Continental Motors

- 200 hp, 2 Stroke, Diesel, JP Fuel
- Airframe Partners
 - Cirrus
 - Lancair
 - New Piper

Turbine: Williams International

- 700 lb Thrust High Bypass Turbofan
- Airframe Partners
 - Cessna Lancair
 - Cirrus New Piper
 - Raytheon
 - VisionAire

LONG HAUL/MEDIUM CAPACITY CONVENTIONAL SUBSONIC TRANSPORT

2-Engine, 325 Passengers, 6500 nmi Design Range, 10000 ft Field Length AST & Base Program Fuel Burn "Waterfall"

LONG HAUL/MEDIUM CAPACITY CONVENTIONAL SUBSONIC TRANSPORT

2-Engine, 325 Passengers, 6500 nmi Design Range, 10000 ft Field Length AST & Base Program NO_x "Waterfall"

2007 - Technology Challenges for JP-Type Fueled Aircraft with reductions of 25 % in CO2 and 67 % in NOx

Technical Objectives

- ➤ Reduce CO₂ Emissions from Future Aircraft by 25 % in 10 years.
- ➤ Reduce NOx Emissions from Future Aircraft by 67 % in 10 years.
- ➤ Address New Emission Concerns by Characterize Emission Levels of Aerosols, Particulates, and Other Minor Trace Species to their Lowest Practical Limits.
- ➤ Enable These Emissions Improvements While Also Improving Safety and Affordability of Operations

<u>Propulsion Technology Challenges :</u>

- Ultra High Bypass Ratio/ Quiet Engine (Jnt.w/AST*)
 - Light Weight, High Temp. Mat'l. & Struct. (Jnt.w/AST)
 - Non-Traditional Prop/Airframe Integ.
 - Intelligent Controls/ MEMS
- Combustion
 - Improved injectors and liners
 - 70% NO_x reduction (Jnt.w/AST)
 - Characterize Other Emissions (Jnt.w/AST, Base R&T & HSR)

Operations, Modeling, & Assessment:

• Improved Ground Operations

Laminar Flow Control

Monolithic Structures

- Improved Flight Operations
- Improved Modeling and Assessments (Jnt.w/AST)

^{*} Joint with AST, Base R&T, or HSR

2022 - Technology Challenges for Carbon-Based Fueled Aircraft with reductions of 50 % in CO2, 80 % in NOx, and in other emissions

Technical Objectives

- ➤ Reduce CO₂ Emissions from Future Aircraft by 50 % in 25 years.
- ➤ Reduce NOx Emissions from Future Aircraft by 80 % in 25 years.
- ➤ Address New Emission Concerns by Reducing Emission Levels of Aerosols, Particulates, and Other Minor Trace Species to their Lowest Practical Limits.
- ➤ Enable These Emissions Improvements While Also Improving Safety and Affordability of Operations

Propulsion Technology Challenges:

- Proof-of-Concept Tests of Revolutionary Carbon-Based Fueled Propulsion System
 - Smart Adaptive Engine (MEMS, Aspirative)
 - New Cycles/ Adv. Methane Cooled Engine
- Proof-of-Concept Tests of Revolutionary Carbon-Based Fueled Combustion System
 - Multi-Staged & Variable Geom.- 80% NO_x reduction
 - Reduce Other Emissions
- Alternate Fuels (Low C/H Ratio/Methane & Low Sulfur Fuels)

Airframe Technology Challenges:

- Proof-of-Concept Tests of Revolutionary Carbon-Based Fueled Airframe Systems
 - Slatless/Flapless Airfoils
 - Active Piezoelectrics
 - Fluidic Thrust Vectoring
 - Box vs. Strut vs. Blended Wing
 - Opto-Electronics
 - Designer Materials/Structures

Operations, Modeling, & Assessment:

- Revolutionary Ground Operations
- Revolutionary Flight Operations
- Improved Assessments